Tests for a unit root using three-regime TAR models: Power comparison and some applications

Daiki Maki*
Doshisha University

Abstract

Tests for a unit root using three-regime threshold autoregressive (TAR) models play a significant role in the empirical analysis of some economic theories. This paper compares the powers of recently proposed unit root tests in three-regime TAR models using Monte Carlo experiments. The following results are obtained from Monte Carlo simulations: Kapetanios and Shin’s (2003) W^{ave} and W^{\exp} statistics have better power for the three-regime TAR process with a relatively narrow band of a unit root process; Bec, Ben Salem, and Carrasco’s (2004) SupW and Park and Shintani’s (2005) inf-t statistics perform poorly under the three-regime TAR process with small threshold values even in comparison with the Dickey-Fuller test, whereas SupW and inf-t statistics dominate in the case of large threshold values; and SupW performs best when the sample size and threshold increase and the outer regimes have a rapid convergence. In order to substantiate the use of our Monte Carlo results for some of the applied work, we apply these tests to the real exchange rates for many countries.

Keywords: Unit root test; three-regime TAR model; power

JEL Classification: C12; C22

*The author would like to thank Shigeyuki Hamori, Shin-ichi Kitasaka, Ryuzo Miyao, Keiji Nagai, Kazuhiro Ohtani, Hisashi Tanizaki, and the seminar participants at Kobe University for helpful comments. Address: Graduate School of Economics, Doshisha University, Karasuma-Higashi-iru, Imadegawa-dori, Kamigyo-ku, Kyoto 602-8580, Japan, (E-mail: eec1102@mail3.doshisha.ac.jp)